Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micron ; 166: 103415, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657307

RESUMO

Silica-Gold Nanostructures (SGNs), composed of a silica core decorated by gold nanoparticles, have the photothermal capacity to transform near-infrared (NIR) wavelengths into heat. This work presents a simple, efficient, and replicable method of synthesis of SGNs and their characterization by: (1) transmission electron microscopy to obtain micrographs of the particles and their corresponding diameter distribution; (2) diffraction patterns showing the amorphous atomic arraignment of the silica and the crystalline atomic arrangement of the gold nanoparticles; (3) zeta potential confirming the stability of the SGNs in a colloidal solution; and (4) thermal images displaying the capacity of SGNs to convert NIR irradiation into heat and their respective increment in temperature. SGNs were synthesized over silica cores with diameters of 63, 83, and 132 nm and decorated with a partial gold shell. They were heated with a coherent light intensity of 340 mW/cm2 with a wavelength of 852 nm. This wavelength is within the range of the optical window of the human body; therefore, SGNs may be used for the photothermal ablation of tumors with no damage to the tissue. The heating of different dimensions of SGNs took 6-8 min of NIR radiation, and their cooling, once the laser was turned off, was in the order of 2-3 min. It was found that SGNs, with a core diameter of 132 nm, have a notable photothermal capacity. That enables them to increase the temperature of their surroundings by 4.4 ºC. This increment in temperature is sufficient to induce cellular necrosis, which makes SGNs a good option for photothermal treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...